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For the reliability analysis of electromagnetic devices under uncertainty, numerous function calls are usually required during the 

performance analysis process of reliability-based design optimization, which actually causes a heavy numerical burden and low-

efficiency. The main contribution of this paper is to propose an efficient reliability analysis method that combines Monte Carlo 

simulation (MCS) with regression Kriging surrogate model. Numerical experiments on analytic and benchmark problems are 

employed to investigate the performance of proposed reliability analysis method. It is also compared with the existing methods such as 

reliability index approach, the sensitivity-assisted MCS methods, and the conventional MCS method. 

 
Index Terms—Reliability analysis, reliability-based design optimization, regression Kriging, Monte Carlo simulation. 

 

I. INTRODUCTION 

N ORDER to find the reliable design against uncertainty, 

recently,  the reliability analysis and reliability-based design 

optimization (RBDO) are introduced into the field of electrical 

engineering [1]. The RBDO, which integrates reliability 

analysis and deterministic optimization approaches, can search 

for a reliable optimum under uncertainty. The accuracy and 

efficiency of reliability calculation method directly affect the 

computational cost of the RBDO algorithm, and even decide 

whether the RBDO can find a true reliable solution or not.  

The Monte Carlo simulation (MCS), is known as an 

accurate method for reliability analysis when the number of 

trials is large enough (normally more than one million for low-

dimensional problems) but suffers from a heavy numerical 

burden simultaneously especially for finite element models. To 

mitigate expensive calculation, the sensitivity-assisted MCS 

method is proposed in [2], where the first-order and the 

second-order sensitivity analyses are respectively introduced 

and a higher efficiency is also achieved together with a better 

accuracy. However, sensitivity analysis of practical 

engineering problems requires stronger theoretical background 

on finite element analysis, which is not easy to be popularized. 

The surrogate modeling techniques such as Kriging and radial 

basis function based response surface method, have been 

successfully utilized to assist optimum searching especially for 

large-scale or complex electromagnetic device problems [3]-

[4], which can sharply reduce the computing time. 

In this paper, considering the accuracy of MCS method and 

the efficiency of surrogate modeling technique, a regression 

Kriging-assisted MCS method is proposed to implement 

reliability calculation in the reliability-based optimal design. 

For a validation and comparison of the performance, the 

proposed method, reliability index approach (RIA), first-order 

sensitivity-assisted MCS (FSA-MCS) and second-order 

sensitivity-assisted MCS (SSA-MCS) methods are applied to 

analytic test functions of different nonlinearity and benchmark 

TEAM problem 22.  

II.  A NOVEL REGRESSION KRIGING-ASSISTED MONTE CARLO 

SIMULATION METHOD FOR RELIABILITY CALCULATION 

A. Reliability Analysis in RBDO 

A typical RBDO algorithm treats reliability as probabilistic 

constraints [5]. Reliability (R) of a specified design x (x∈R
n
) 

under uncertainty is defined as the probability of keeping x in 

the feasible region of a constraint g(x)≤0 as 
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The multi-dimensional integral in (1) makes direct calculation 

impractical especially for complicated engineering cases. 

B. Regression Kriging- Assisted Monte Carlo Simulation 

In the proposed method, firstly the surrogate model is built 

by regression Kriging (RK) as follows: 

Step 1. Initialize sampling and testing points: generate 

sampling points and prepare testing points. 

Step 2. Construct regression Kriging model: calculate 

constraint function values for all sampling points by finite 

element analysis (FEA). 

Based on the known data, formulate RK model as: 
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where z
*
(x0) is the response value at the predicted point x0 and 

z is constraint function value at samples; q0 and q are predic-

tors of x0 and samples, respectively; λ0 is Kriging weights and 

β
*
 is estimated regression coefficients [6].  

Calculate the estimated fitting error for all test points, check 

stop criteria and terminate. 

Step 3. Adaptive sampling insertion: insert new sampling 

points based on the predefined fitting error and go to step 2. 

Then, in the RBDO, reliability analysis by the regression 

Kriging-assisted MCS (RK-MCS) is implemented as: 

Step 1. Generate N pseudo-random test points ξi in uncertain 

set based on statistical distribution of random variables. 

Step 2. Calculate the constraint value g(x) by the RK model 

and check if it satisfies g(x)≤0 or not for each test point ξi. 

I 



Step 3. Evaluate the reliability of design x by: 
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and the indicator function I[·] is defined as follows: 
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which means only the test points locating in the feasible 

region contribute to reliability calculation. 

 III. NUMERICAL APPLICATIONS 

A.  Numerical Results of Analytic Test Problems 

Two test functions defined in [2] are adopted for 

performance investigation of different reliability calculation 

methods: RIA, FSA-MCS, SSA-MCS, RK-MCS, and MCS. 

For test problem 1, the reliabilities calculated by SSA-MCS 

and RK-MCS show better consistence with that from MCS as 

shown in Table I.  

For a further performance investigation, test problem 2 with 

stronger nonlinearity is exploited and the results of different 

methods are compared in Table II. For different test designs, 

the RK-MCS with 50 samples and SSA-MCS show better 

accuracy, which outperform their counterparts RIA, FSA-

MCS. Furthermore, once one accurate surrogate model is 

constructed, the accuracy of RK-MCS for reliability 

calculation will not be influenced by the standard deviations. 

B.  Reliability Analysis of TEAM Problem 22 

In the design of superconducting magnetic energy storage 

system, the quenching condition approximated as (5) should 

be considered. 
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where Ji and Bm,i (i=1, 2) are the current density and the 

maximum magnetic flux density respectively. For the three-

parameter optimization problem, geometric parameters x=[R2, 

H2, D2] are treated as uncertain variables with uncertainty of 

σ=[15.3, 10, 10]
T 

mm. Reliability calculation results of five 

optimal designs chosen from published papers are shown in 

Table III.  

Considering the high computational cost, the number of 

trials in the MCS based methods is set 10,000. Therefore, in 

Table III, only the first three decimal values of reliability 

calculated by MCS methods are accurate enough. Obviously 

results of RK-MCS with 125 samples and SSA-MCS match 

well with that of the MCS method. Just considering reliability 

analysis of a specified design, the computational cost of the 

RK-MCS (125 times FEA) may be a little higher than the 

SSA-MCS (around 50~80 times equation solving, depending 

on nodal meshes and the size of random geometric variables). 

However, the 125 times FEA in the RK-MCS are just used for 

surrogate modeling; during the reliability-based optimization 

process, no more FEA is required while the sensitivity-assisted 

MCS methods need different times FEA for sensitivity 

analysis during each iterative process.  

From the aspect of application in RBDO, the RK-MCS will 

be a better choice considering efficiency and accuracy. 

Besides, the RK-MCS method is more convenient to utilize. 
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TABLE I RELIABILITY CALCULATION RESULTS OF TEST PROBLEM 1 

Designs Methods 
Different standard deviations (σ) 

0.1 0.2 0.3 0.5 0.8 

A 
(3.160, 2.150) 

RIA 0.8138 0.6722 0.6169 0.5708 0.5443 

FSA-MCS 0.8327 0.6834 0.6246 0.5752 0.5476 

SSA-MCS 0.8357 0.6776 0.6119 0.5504 0.5074 

RK-MCS a 0.8360 0.6778 0.6119 0.5503 0.5060 

MCS 0.8355 0.6779 0.6118 0.5503 0.5062 

B 
(3.297, 2.905) 

RIA 1.0000 0.9988 0.9782 0.8870 0.7754 

FSA-MCS 1.0000 0.9999 0.9808 0.8791 0.7525 

SSA-MCS 1.0000 1.0000 0.9939 0.9051 0.7699 

RK-MCS 1.0000 1.0000 0.9935 0.9052 0.7724 

MCS 1.0000 1.0000 0.9934 0.9052 0.7714 
a The number of samples in RK is 30, other parameters are same as in [2]. 

TABLE II RELIABILITY CALCULATION RESULTS OF TEST PROBLEM 2 

σ Methods 
Design A  Design B  Design C 

R δR (%)  R δR (%)  R δR (%) 

0.1 

RIA 0.9612 1.908  0.8817 2.682  0.9757 2.205 

FSA-MCS 0.9914 1.174  0.8863 2.174  0.9999 0.221 

SSA-MCS 0.9803 0.316  0.9051 0.099  0.9944 0.331 

RK-MCS 0.9796 0.031  0.9052 0.088  0.9977 0 

MCS 0.9799 —  0.9060 —  0.9977 — 

0.2 

RIA 0.8112 5.942  0.7230 3.484  0.8380 6.116 

FSA-MCS 0.8662 13.125  0.7223 3.578  0.9284 17.564 

SSA-MCS 0.7632 0.327  0.7471 0.267  0.7953 0.709 

RK-MCS 0.7645 0.157  0.7476 0.200  0.7902 0.063 

MCS 0.7657 —  0.7491 —  0.7897 — 

0.3 

RIA 0.7218 15.952  0.6534 4.905  0.7446 27.282 

FSA-MCS 0.7678 23.341  0.6525 5.036  0.8299 41.863 

SSA-MCS 0.5984 3.872  0.6827 0.640  0.5994 2.462 

RK-MCS 0.6203 0.353  0.6857 0.204  0.5865 0.256 

MCS 0.6225 —  0.6871 —  0.5850 — 

TABLE III RELIABILITY CALCULATION RESULTS OF TEAM 22 

No. Optimal design x [m]  Reliability of g2(x) a 

R2 H2/2 D2  FAS-MCS SSA-MCS RK-MCS MCS 

1 3.0800 0.2390 0.3940  0.9805 0.9807 0.9807 0.9807 

2 3.0500 0.2460 0.4000  0.7200 0.7232 0.7231 0.7231 
3 2.6602 0.5574 0.2218  0.9500 0.9512 0.9522 0.9521 

4 3.0988 0.2644 0.3903  0.6679 0.6708 0.6710 0.6716 

5 3.0197 0.3081 0.3496  0.5158 0.5215 0.5211 0.5210 
a Reliability of constraint g1(x) for all cases is 1.0.  


